Neisseria gonorrhoeae–Induced Inflammatory Pyroptosis in Human Macrophages is Dependent on Intracellular Gonococci and Lipooligosaccharide

نویسندگان

  • Jessica Leigh Ritter
  • Caroline Attardo Genco
چکیده

Neisseria gonorrhoeae, the human obligate pathogen responsible for the sexually transmitted disease gonorrhea, has evolved several mechanisms to evade the host immune response. One such mechanism is the modulation of host cell death pathways. In this study, we defined cell death pathways induced by N gonorrhoeae in human monocyte-derived macrophages (MDMs). In a dose-dependent manner, N gonorrhoeae stimulation of MDMs resulted in caspase 1 and 4-dependent cell deaths, indicative of canonical and noncanonical pyroptosis, respectively. Internalization of bacteria or stimulation with lipooligosaccharide (LOS) specifically induced pyroptosis in MDMs and increased secretion of IL-1β. Collectively, our results demonstrate that N gonorrhoeae induces inflammatory pyroptosis in human macrophages due in part to intracellular LOS. We propose that this in turn may exacerbate inflammatory outcomes observed during mucosal infection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth of Neisseria gonorrhoeae in CMP-N-acetylneuraminic acid inhibits nonopsonic (opacity-associated outer membrane protein-mediated) interactions with human neutrophils.

Gonococci possessing certain opacity-associated (Opa) outer membrane proteins adhere to and are phagocytosed by human neutrophils in the absence of serum. Recently, it has been shown that serum-sensitive strains of Neisseria gonorrhoeae possessing the appropriate lipooligosaccharide phenotype become serum resistant when grown in the presence of CMP-N-acetylneuraminic acid (CMP-NANA) because of ...

متن کامل

Phosphoethanolamine Modification of Neisseria gonorrhoeae Lipid A Reduces Autophagy Flux in Macrophages.

Autophagy, an ancient homeostasis mechanism for macromolecule degradation, performs an important role in host defense by facilitating pathogen elimination. To counteract this host defense strategy, bacterial pathogens have evolved a variety of mechanisms to avoid or otherwise dysregulate autophagy by phagocytic cells so as to enhance their survival during infection. Neisseria gonorrhoeae is a s...

متن کامل

Phosphoethanolamine substitution of lipid A and resistance of Neisseria gonorrhoeae to cationic antimicrobial peptides and complement-mediated killing by normal human serum.

The capacity of Neisseria gonorrhoeae to cause disseminated gonococcal infection requires that such strains resist the bactericidal action of normal human serum. The bactericidal action of normal human serum against N. gonorrhoeae is mediated by the classical complement pathway through an antibody-dependent mechanism. The mechanism(s) by which certain strains of gonococci resist normal human se...

متن کامل

Properdin is critical for antibody-dependent bactericidal activity against Neisseria gonorrhoeae that recruit C4b-binding protein.

Gonorrhea, a sexually transmitted disease caused by Neisseria gonorrhoeae, is an important cause of morbidity worldwide. A safe and effective vaccine against gonorrhea is needed because of emerging resistance of gonococci to almost every class of antibiotic. A gonococcal lipooligosaccharide epitope defined by the mAb 2C7 is being evaluated as a candidate for development of an Ab-based vaccine. ...

متن کامل

Complement processing and immunoglobulin binding to Neisseria gonorrhoeae determined in vitro simulates in vivo effects.

Local inflammation elicited by Neisseria gonorrhoeae correlates closely with sensitivity to killing by normal human serum. Serum-sensitive (SS) isolates are rendered resistant in vitro by lipooligosaccharide sialylation. Differences in C3b processing on N. gonorrhoeae in vitro were found to match findings at the cervical level in vivo. Nonsialylated SS gonococci bound 5-fold more C3b than did s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2018